Preparation of Nanocomposite Heteropoly Metalate Based Graphene Oxide: Insight into Cadmium Adsorption
نویسندگان
چکیده مقاله:
We developed a facile strategy for preparation of heteropoly metalate/graphene oxide nanocomposite as a new ion exchanger for cadmium ion removal from aqueous solution. The synthesized nanocomposite was characterized by X-ray powder diffraction (XRD), UV-Vis spectroscopy, FT-IR spectroscopy and Raman spectroscopy. Our findings indicated that the combination of heteropoly metalate nanoparticles with graphene oxide results in an excellent performance for cadmium ions removal of aqueous solution. The experimental data demonstrated that the adsorption isotherm fitted well by Langmuir model with maximum sorption capacity of 47.85 mg/g. The removal behavior of this compound was evaluated by various parameters such as contact time, concentration of metal ion, pH of solution and temperature. In addition, the effect of interfering cations on the cadmium adsorption is investigated. Dubinin–Radushkevich model represented physical sorption occurred as bold mechanism that is confirmed by thermodynamic parameters. Also, the obtained data of the recycling experiment presented excellent stability after 4 consecutive cycles. This study indicated heteropoly metalate supported graphene oxide with good performance for removal of cadmium can be used for treating polluted solution by other heavy metal.
منابع مشابه
Preparation of Cobalt Oxide/Zinc Oxide Nanocomposite
Cobalt Oxide/ Zinc Oxide nanocomposite was synthesized by dropwise addition ofCo(NO)3.6H2O and Zn(NO3)2.4H2O solutions to KOH solution at different temperatures followed bycalcination at 300ºC for 4 h. The morphology and structure of nanoparticles and the influence oftemperature on particle size were studied using scanning electron microscopy (SEM) and X-RayDiffraction (XRD). Minimum particle s...
متن کاملAdsorption of mercury(ii) with an Fe3O4 magnetic polypyrrole–graphene oxide nanocomposite
To enhance the ability to remove mercury(II) from aqueous media, an Fe3O4 magnetic nanocomposite (PPy–GO) composed of polypyrrole (PPy) and graphene oxide (GO) was synthesized in situ and characterized via scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), Fourie...
متن کامل16 Insight Into Adsorption Thermodynamics
Saving the environment to save the Earth and to make the future of mankind safe is the need of the hour. Over the past several decades, the exponential population and social civilization change, affluent lifestyles and resources use, and continuing progress of the industrial and technologies has been accompanied by a sharp modernization and metropolitan growth. The world is reaching new horizon...
متن کاملFacile hydrothermal preparation of graphene oxide nanoribbons from graphene oxide.
Graphene oxide nanoribbons (GONR) with regular edges have been prepared by a facile hydrothermal method. The relatively high yield and convenient preparation of GONR eventually make graphene nanoribbons (GNR) accessible in the field of composite materials where bulk quantities of nanoribbons are required.
متن کاملAdsorption Performance Indicator for Power Plant CO2 Capture on Graphene Oxide/TiO2 Nanocomposite
This study presents the adsorption performance indicator for the evaluation of thermal power plant CO2 capture on mesoporous graphene oxide/TiO2 nanocomposite. To begin, this adsorbent was synthesized and characterized using N2 adsorption-desorption measurements (BET and BJH methods), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microsc...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 3
صفحات 223- 235
تاریخ انتشار 2017-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023